The Configurations of N-Methyl- and N-t-Butyl- α methoxycarbonylmethanimine N-Oxides

Yoshinobu Inouye,* Kazuharu Takaya, and Hiroshi Kakisawa Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305 (Received June 3, 1983)

Synopsis. N-Methyl- α -methoxycarbonylmethanimine N-oxide, Z configuration in crystal, was found to exhibit a facile equilibration with its E-isomer in solution. The configuration of N-t-butyl derivative was always Z.

Recently, we found that N-benzyl- α -methoxycarbonylmethanimine N-oxide (1) and its analogues exist in one configuration in the crystalline state but, in solution, exhibit a facile isomerization to give a mixture of E- and Z-isomers. The configuration of 1 in the crystalline state have been proved to be Z by X-ray crystal analysis. Z

In this paper, we wish report the geometrical structures of N-methyl- (2) and N-t-butyl- α -methoxycar-bonylmethanimine N-oxides (3) in order to clarify the influence of a substituent on the nitrogen atom.

Experimental

Preparation of 2 and 3. According to the procedure of Winterfeldt and co-workers,³⁾ 2 and 3 were prepared from N-alkylhydroxylamine hydrochloride and methyl glyoxylate⁴⁾ in the presence of sodium acetate and calcium chloride.

2, Mp 69—71 °C (from benzene, lit,³) mp 71 °C); ν (KBr): 1710 and 1230 cm⁻¹; λ_{max} (MeOH): 268 nm. Found: C, 40.98; H, 6.03; N, 11.96%. Calcd for C₄H₇NO₃: C, 41.02; H, 6.03; N, 11.96%.

3, Bath temp 110—120 °C/0.55 mmHg (1 mmHg \approx 133.322 Pa) (Kugelrohr dist): ν (film): 1720 and 1180 br cm⁻¹; $\lambda_{\rm max}$ (MeOH): 270 nm. Found: C, 52.98; H, 8.42; N, 8.66%. Calcd for C₇H₁₃NO₃: C, 52.81; H, 8.23; N, 8.79%.

¹H-NMR Measurements. ¹H-NMR spectra were obtained on a JEOL JNM-PMX60SI spectrophotometer and δ-values were calculated from the TMS as an internal standard (35 °C).

Discussion

The N-methyl derivative 2 had been already prepared in 1969 by Winterfeldt and co-workers³⁾ and the ¹H-

NMR spectrum (CDCl₃) reported showed only three signals at δ 7.39, 3.82, and 3.66. These results suggested the absence of a geometrical isomer.

However, as shown clearly in Fig. 1, the spectra of **2** changed gradually with the elapse of time. The signal at δ 3.81 decreased, while a new peak appeared at δ 4.14 increased. The relative intensities of these two peaks remain constant after 40 min.

The signal at δ 4.14 is assignable to the N-CH₃ group in E-nitrone (**2E**) as the result of the deshielding effect of the neighboring methoxycarbonyl group.¹⁾ Thus, the phenomena in Fig. 1 are explained by arguing that an initial Z-nitrone (**2Z**), which determines the crystal structure, isomerizes to the E-isomer (**2E**) when it dissolves in CDCl₃ and that, after 40 min, the system reaches the equilibrium mixture of both isomers. The E/Z ratio at equilibrium was calculated from the peak areas of δ 4.14 and 3.81 and the rate constant of isomerization was obtained from the E/Z ratios at different time. The results are summarized in Table 1.

From the Table, it is clear that the solvent polarity is significant in determining the E/Z ratio at equilibrium: the less polar the solvent polarity, the more predominant the E-isomer. Although the detailed mechanism of the stabilizing the two geometrical isomers in a given solvent is still unclear, the Z-isomer, which is anticipated⁵ to have a larger dipole moment than the E-isomer, is thought to be more stabilized

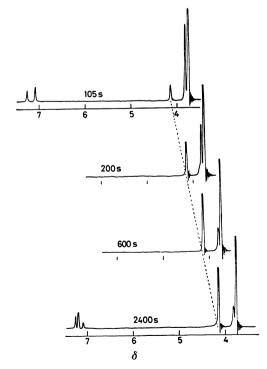


Fig. 1. Time-dependence of the intensities of methyl protons in the ¹H-NMR spectra of 2 in CDCl₃.

Table 1. The E/Z ratio and the rate constant of isomerization of 2^{n}

Solvent	E/Z	$k_{\rm Z}/{\rm s}^{-1}$	$k_{\rm E}/{\rm s}^{-1}$
C ₆ D ₆	6.0		
CDCl ₃	3.8	2.4×10^{-3}	6.2×10^{-4}
CD ₃ OD	0.83	3.3×10^{-5}	4.0×10^{-5}
DMSO-d ₆	0.67		

a) Measured at 0.08 mmol of 2 in 0.3 ml of each solvent.

in more polar solvents.

The rate constant in CD₃OD is smaller than that in CDCl₃. This can be partially explained by considering the hydrogen bonding between the nitrone oxygen and the solvent hydrogen (=N→O···H-O-R).

In the case of N-t-butyl derivative 3, both ¹H-NMR (δ in CDCl₃: 7.25, 3.76, and 1.49) and ¹³C-NMR (δ in CDCl₃: 161.3, 121.1, 74.8, 51.8, and 28.2) were simple and no changes were observed even when the temperature was raised to 62 °C. This shows that only one configurational isomer is present in solution.

As a large NOE (35%) was observed between the olefinic proton and t-butyl protons, 6) the configuration of the nitrone 3 was proved to be Z.

Various derivatives have been investigated; among these, N-alkyl- α -methoxycarbonylmethanimine N-oxides which have at least one hydrogen at the carbon attached to the nitrogen of the nitrone chromophore are apt to equilibrate into E- and Z-isomers in solution at room temperature.

References

- 1) Y. Inouye, J. Hara, and H. Kakisawa, Chem. Lett., 1980, 1407.
 - 2) Y. Inouye, Bull. Chem. Soc. Jpn., 56, 244 (1983).
- 3) E. Winterfeldt, W. Krohn, and H.-U. Stracke, *Chem. Ber.*, **102**, 2346 (1969).
- 4) T. R. Kelly, T. E. Schmidt, and J. G. Haggerty, Synthesis, 1972, 544.
- 5) Cf. F. Barrow and F. J. Thorneycroft, J. Chem. Soc., 1934, 722; 1939, 773.
- 6) Cf. D. R. Boyd, W. B. Jennings, R. Sprath, and D. M. Jerina, J. Chem. Soc., Chem. Commun., 1970, 745.